HARROWBARROW SCHOOL

Calculation Policy - February 2018

EYFS	Concrete	Pictorial
Children count reliably with numbers from 1-20.	- Number songs with props. - Counting loose objects and developing 1- 1 correspondence.	- Daily 100 day counting using 100 square. - Counting across number line.
Children recognise and place numbers from 1-20 in order.	- Play based learning using resources clearly labelled with numerals to support recognition;	- Ordering items either by quantity or numeral.
Say which number is 1 more or 1 less than a given number.	- Acting out number songs, e.g. 5 Little Speckled Frogs; removing 1 frog at a time.	- Using bead strings, numicon, unifix, etc to add/subtract 1. - Using a number line to visualise where 1 more/less is.
Using quantities and objects, they add and subtract 2 singledigit numbers and count on or	- Using loose parts to create number sentences, e.g. throwing coloured on one side beans onto a plate, how many gold?	- Using numicon, bead strings, loose parts, etc. to generate

back to find the answer.	How many white? - Practical contexts, if there are 4 people in the house and this child joins how many will there be?			dding/subtracting
They solve problems including doubling, halving and sharing.	- Discussing doubles when playing dice games/dominoes. Have you scored a double? - Using physical objects to create doubles; I have 4 aliens, how many would I have if I added another 4 ? - Cutting cakes, fruit, play dough, etc. into halves. - Sharing items equally between 2 children. - Sharing items equally between a small group of children.		- Pictures of collections of objects. Can you add another set of the same quantity, how many altogether? - Pictures of collections of objects. Can you share these between $2 / 3 / 4$?	
Addition	Concrete	Pictorial ${ }^{\text {a }}$ Abstract		
Year 1 Children should read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs represent and use number bonds and related subtraction facts within 20 add and subtract one-digit and	$5+5=10$		$\begin{aligned} & \square \square \square \square \\ & 10 \\ & \frac{\square \square \square}{10} \end{aligned}$	8 6 2 5 3 $12+\square=15$

two-digit numbers to 20, including zero
Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? 9.

Concrete methods might include:
using beadstrings, Numicon, multilink or unifix to make number bonds to 20, using dot patterns on dice to add, using Numicon to balance a simple equation such as $7=3+4$

Pupils will then move on to more pictorial representations such as using 10 frames, partpart whole with missing numbers or numbers represented by pictures, using numberlines to count on.

Abstract maths will involve being able to put missing numbers in a box, looking at patterns when adding numbers such as $5=4+1,5=2+3$ etc

$=4+15$
(2) Completet the number sentences.

-0.000 = +
-000 = +
-वणण $=+$
वणणण -

Year 2

Children should

solve one-step problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers; adding three one-digit numbers
show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

Concrete maths might involve:

bridging the gap with Numicon (understanding that $8+6$ could be worked out as $8+2+4$), partitioning numbers using Dienes, using Cuisenaire rods to work out addition questions such as $8+5=10+3$, using beadstrings to count on tens and then units Pictorial maths might include: using ten frames to work out addition sums such as $7+5=7+$ $3+2$, working out sums of money, using shape to work out addition questions, using Dienes to start to partition numbers Abstract maths might include: working out part/part whole models or bar models, using a 100 square to count on tens and units, using a numberline to count on tens and units, using knowledge of $3+7$ to work out $30+70$, starting to use column methods for addition	$8+5$		$53+26=79$$\begin{array}{llr} 6+4 & \bigcirc & 6+5 \\ 6+4 & \bigcirc & 3+6 \\ 11-4 & \bigcirc & 12-5 \\ 11-4 & \bigcirc & 12-4 \end{array}$Tens Ones $\\|$ $:$ $\\|\\|$ (2) Complete the part whole models below: (3) Find the missing numbers in the related facts. $\begin{aligned} & 5+4=9 \\ & 50+40=\square \quad \begin{array}{l} 8=3+5 \\ 80=30+\square \end{array} \quad \begin{array}{l} 4=10-6 \\ 40=\square-60 \end{array} \end{aligned}$

Year 3

Children should:
add and subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction estimate the answer to a calculation and use inverse operations to check answers. solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.
measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (l/ml)

Concrete maths might include: using counters on place value charts, using Dienes to add, using Numicon to add tens and units

Pictorial maths might include: using place value charts to support the idea of column addition, finding missing

Use the bar rmodel to complete the number sentences.

Complete the barmodel.

(2)

numbers using place value charts, solving problems using images of Dienes

Abstract maths might include: part/part whole models, bar models, finding related facts for addition and subtraction, using column addition

Year 4

Children should
add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
estimate and use inverse operations to check answers to a calculation solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why
solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why add and subtract fractions with the same denominator solve simple measure and money problems involving fractions and decimals to two decimal places. solve problems involving

column addition

They should be encouraged to choose from a range of strategies:

- Counting forwards and backwards in tenths and hundredths: $1.7+$ 0.55
- Reordering: $4.7+5.6-0.7,4.7$ $0.7+5.6=4+5.6$
- Partitioning: counting on or back $540+280,540+200+80$
- Partitioning: bridging through multiples of 10 :
- Partitioning: compensating: 5.7 + 3.9, $5.7+4.0-0.1$
- Partitioning: using 'near' double: $2.5+2.6$ is double 2.5 and add 0.1 or double 2.6 and subtract 0.1
- Partitioning: bridging through 60 to calculate a time interval: It is 11.45. How many hours and minutes is it to 15.20 ?
- Using known facts and place value to find related facts.

Year 6

Children should
use their knowledge of the order of operations to carry out calculations involving the four operations
use estimation to check answers
to calculations and determine, in the context of a problem, an appropriate degree of accuracy. solve addition and subtraction multi-step problems in contexts, deciding which operations and

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { methods to use and why } \\ \text { add and subtract fractions with } \\ \text { different denominators and } \\ \text { mixed numbers, using the } \\ \text { concept of equivalent fractions }\end{array} & & & \begin{array}{c}\text { Line up the } \\ \text { decimal points }\end{array} \\ \text { Concrete maths might include: } \\ \text { using counters on place value } \\ \text { decimal points }\end{array}\right]$.

Subtraction	Concrete	Pictorial	Abstract
Year 1 Pupils should: read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs represent and use number bonds and related subtraction facts within 20 add and subtract one-digit and two-digit numbers to 20 , including zero		Complete the number sentence О0000ø $7-2=$ \square	$\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$

Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? -9 Concrete methods might include: using beadstrings, Numicon, multilink or unifix to make number bonds to 20, using dot patterns on dice to add, using Numicon to balance a simple equation such as $7=10-3$ Pupils will then move on to more pictorial representations such as using 10 frames, partpart whole with missing numbers or numbers represented by pictures, using numberlines to count back. Abstract maths will involve being able to put missing numbers in a box, looking at patterns when subtracting numbers such as $5=6-1,5=$ 7-2 etc		Think of two questions to ask your friend about the image. Represent them about the calculation. \square - \square = \square Q \&囚O $x\|x\| x \mid$ \qquad 6-0- $3=\square$ \qquad \square	4-3- [- -4-3 \square
Year 2 Children should solve one-step problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100	Tens Ones IIII $::$ III	$10 s$ $1 s$ 1111 $i n i$ 4 1	T Tems ane IIIII $::$ III $\begin{array}{r} 56 \\ -30 \\ \hline \end{array}$7 4 5

add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a twodigit number and tens; two two-digit numbers; adding three one-digit numbers
show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

Concrete maths might involve: bridging the gap with Numicon (understanding that 12-6 could be worked out as 12-2-4), partitioning numbers using Dienes, using Cuisenaire rods to work out addition questions such as $10-4$, using beadstrings to count on tens and then units, using multilink to find the difference between two sets of blocks, using part/part whole models to link to addition
Pictorial maths might include: using ten frames to work out addition sums such as $10-3=9-2$, working out sums of money, counting back using a number starting using the larger number and counting back in ones and then tens, using Dienes to start to partition numbers, drawing bars to find the difference between two numbers, use base ten against written calculation to show how you could work this out Abstract maths might include: working out part/part whole models or bar models, using a 100 square to count on tens and units, using a

Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.

$82-50=$

Comporison Bar Models
Lirit is 13 reon otd Mer ster is 22 rean old.
And the Fnd the dillerence in oge between them.

13

$31 \cdot 30=1$

$41-30=11$

numberline to count on tens and units, using knowledge of $10-3=7$ to work out 100-30, starting to use column methods for subtraction			
Year 3 Children should: add and subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction estimate the answer to a calculation and use inverse operations to check answers. solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity ($1 / \mathrm{ml}$) Concrete maths might include: using counters on place value charts, using Dienes to add, using Numicon to add tens and units, linking counters on place value chart to column methods for subtraction Pictorial maths might include: using place value charts to support the idea of column subtraction, finding missing numbers using place value charts, solving problems using images of Dienes, using jottings to exchange and regroup, use bar models to work out number		Hundreats Tens Ones $\bigcirc \bigcirc$ \varnothing $\bigcirc \bigcirc$ \bigcirc \varnothing $\bigcirc \bigcirc$ $\bigcirc \bigcirc$ Complete these subtractions using counters.	$\begin{array}{r} 564-\square=558 \\ \square-8=725 \\ 352=361-\square \end{array}$607 203 $?$298 273 794$?$ 132

Numicon to add tens and units, linking counters on place value chart to column methods for subtraction Pictorial maths might include: using place value charts to support the idea of column subtraction, finding missing numbers using place value charts, solving problems using images of Dienes, using jottings to exchange and regroup, use bar models to work out number sentences Abstract maths might include: part/part whole models, bar models, finding related facts for addition and subtraction, using column addition, using bar model link to addition, working out which sums have the same answer using their understanding of place value			$\begin{aligned} & 3.80 \leftarrow \\ &- 1.26 \\ & \hline \end{aligned} \text { Using zero as a place holder }$ to help with regrouping

Year 5
 Children should

add and subtract whole numbers with more than 4 digits, including using efficient written methods (columnar addition and subtraction add and subtract numbers mentally with increasingly large numbers
use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
add and subtract fractions with the same denominator and related fractions; write mathematical statements >1 as a mixed number (e.g. $2 / 5+4 / 5=6 / 5=11 / 5$)

Concrete maths might include: using counters on place value charts, using Dienes to subtract up to 4 digits
Pictorial maths might include: using place value charts to support the idea of column subtraction including adding decimals, finding missing numbers using place value charts, solving problems using images of Dienes, using fraction chart to subtract fractions with denominators in the same times tables
Abstract maths might include: part/part whole models, bar models, finding related facts for addition and subtraction, using column subtraction

$\begin{array}{r}\text { " } 8^{\prime \prime} x^{\prime} 0{ }^{\prime \prime} 6 \\ -\quad 2128 \\ \hline 28,928\end{array}$
Use zeros
for place-
holders.

Concrete

Children to represent the practical resources in a picture and use a bar model.
3×4
$4+4+4$
There are 3 equal groups, with 4 in each group.

030

Pictorial

Abstract

$5+3=9$

Repeated addition number sentence $2+2+2$

Worded problem \square lots of 2 is 6

1	2	3	4	5	6	7	8	9	10
I1	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

$3 \times 4=12$

$4+4+4=12$
multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Concrete: counting sticks, 100 squares and numberlines, Numicon for counting in steps of 2,5 and 10 , using fingers for counting up (Mexican wave), money counting up in 2, 5 and 10s, using different objects, Unifix, using shapes such as pentagons for counting up, dominoes, dice, counting in 2s with socks, arrays through Numicon as well as chocolate bars, packs of 10 pencils or cartons of drinks
Pictorial: using arrays, grouping objects for counting, putting spots on a ladybird, drawing on blank dice,
Abstract: using numberlines, linking multiplication to repeated addition,

```
Number lines to show repeated groups-
3\times4
    000000
```


Cuisenaire rods can be used too
Use arrays to illustrate commutativity counters a objects can also be used
$2 \times 5=5 \times 2$

2 lots of 5

Represent this pictorially alongside a number line e.g

Children to represent the arrays pictorially.

Which

Explain why
How can you make the groups equal?

Abstract number line showing three jumps of four.
$3 \times 4=12$

Children to be able to use an array to write a range of calculations e.g.
$10=2 \times 5$
$5 \times 2=10$
$2+2+2+2+2=10$
$10=5+5$

Complete the sentences to describe the equal groups.

There are _ equal groups with __ in each group.
There are three

Use $<,>$ or $=$ to make the statements correct.

3×5	\square	$5+5+5+5$
2×2	\square	$2+2$
$4+4+4$	\square	2×2

There are 7 tricycles in the playground.
How many wheels are there altogether?
Compete the bar model to find the answer

Here is a blue strip of paper.

An orange strip is four times as long.

The strips are joined end to end.

20 cm

```
Chidren to be able to u
l}\begin{array}{l}{10-2\times5}\\{5\times2-10}
l
```


solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects

Concrete: using counters on place value charts to work out x tens and units, using cones, multilink and Numicon to work out factors pairs for numbers

Pictorial Linking Numicon to more formal methods for multiplication such as the grid method, using shape to complete number statements, showing arrays pictorially, showing Dienes pictorially by multiplying out tens and units, use Dienes to multiply by 10

Abstract: link multiplication to measure questions such as area, converting units of measure and being able to x by 10 and 100 , moving on to jottings and then more formal methods for multiplying 2 and 3 digit numbers by 1 digit

Year 5

Pupils should:

identify multiples and factors, including finding all factor pairs solve problems involving multiplication and division where larger numbers are

squared and cubed numbers, using place value charts to work out x decimals and whole numbers by 10 , $100,1,000$ and 10,000

Pictorial: using images of place value charts or Dienes to support understanding of more formal methods of multiplication, using images such as overlays to work out multiplication of fractions

Abstract: using short and long multiplication methods being sure about place value, being able to work out multiplication of fractions, working out common factors, understand the multiples of a number

Year 6

multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. $1 / 4 \times 1 / 2=$ 1/8)
multiply one digit numbers with up to two decimal places by whole numbers solve problems involving the calculations of percentages (e.g. of measures) such as 15% of 360 and the use of percentages for comparison

96

$32 \times$
$192 \sim$ this is 96×2
$2880<$ this is 96×30
3072 $<$ this is 96×32

What are the common factors of these pairs of numbers?

24 and 36
20 and 30
28 and 45

Concrete: using place value charts to support jottings for multiplying H T U, using arrays with Numicon or multilink for factors and to work out common factors, using multilink for working out squared and cubed numbers, using place value charts to work out x decimals and whole numbers by 10 , 100, 1,000 and 10,000, using Numicon to work out percentages

Pictorial: using images of place value charts or Dienes to support understanding of more formal methods of multiplication, using images such as overlays to work out multiplication of fractions, using Numicon to work out division of fractions by whole numbers

Abstract: using short and long multiplication methods being sure about place value, being able to work out multiplication of fractions, working out common factors, understand the multiples of a number, prime factors for a number, multiplying decimals, working out missing numbers for multiplication, working out what the largest number can be made through multiplication

First, separate the square into 3 equal parts vertically and shade 2 parts to indicate $\frac{2}{3}$.

Now separate the square into 4 equal parts horizontally and shade 3 of them
to show $\frac{3}{4}$.

$14 \times 8=112$
Use this to work out:
1.4×8
140×8

$$
\begin{aligned}
& 124 \\
& \begin{array}{r}
26 \\
\hline 744
\end{array} \\
& \begin{array}{rrrr}
2 & -4 & 8 & 0 \\
\hline 3 & 2 & 2 & 4
\end{array}
\end{aligned}
$$

Answer: 3224

Work out the missing number.
$6 \times 35=\square \times 5$
(targest product.

Abstract: using numberlines, linking division to repeated subtraction, working out the inverse, grouping and sorting

Year 2

Pupils should be taught to: division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals ($=$) signs numbers can be done in any order (commutative) and division of one number by another cannot multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Concrete: counting sticks, 100 squares and numberlines, Numicon, arrays through Numicon grouping and sorting Pictorial: using arrays, grouping and sorting
Abstract: using numberlines, linking

3 groups of 2
$2 \mathrm{~d}+1 \mathrm{~d}$ with remainders using lollipop sticks. rods, above a ruler can also be used. $13-4$

Use of lollipop sticks to form wholes- squares because we are dividing by 4 .

There are 3 whole squares, with 1 left over.

Children to represent the lollipop sticks pictorially.

There are 3 whole squares, with 1 left over.
Children to represent repeated subtraction pictorially.

Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.

3 groups of 4 , with 1 left over'

division to repeated subtraction, working out the inverse, grouping and sorting

Year 3

Children should:
recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
solve problems, including missing number problems, involving multiplication and division, including integer scaling problems and correspondence problems in which n objects are connected to m objects

Concrete methods:

linking multiplication to repeated addition, using cones, Numicon, multilink or Cuisenaire rods to look at arrays with related multiplication and division facts, using place value charts to multiply tens and units, using Numicon to group tens and units Pictorial methods:
Linking Numicon to more formal methods for multiplication such as the grid method, using shape to complete number statements, showing arrays pictorially, showing Dienes pictorially by

using place value charts to divide tens

 and units, using Numicon to group tens and unitsPictorial methods:
Linking Numicon to more formal methods for division such as the short division, showing arrays pictorially, showing Dienes pictorially by dividing out tens and units

Abstract:

Completing bar models, using jottings to support concrete or pictorial methods by divide tens and units, starting to use formal methods for division, linking division to measure and problem solving such as finding missing sides if you know the area, converting units of measure and being able to divide by 10 and 100

Year 5

multiply and divide numbers mentally drawing upon known
facts
the efficient written method of short division and interpret remainders appropriately for the context

fractions and problems involving simple rates Concrete - using counters for division to support more formal methods Pictorial - using jottings as a way to move on to more formal methods for division Abstract - using short division methods, using known facts to solve problems, completing bar models, complete missing numbers questions			
Year 6 divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context divide numbers up to 4 digits by a twodigit number using the formal written method of short division where appropriate, interpreting remainders according to context use written division methods in cases where the answer has up to two decimal places use common factors to simplify fractions; use common multiples to express fractions in the same denomination divide proper fractions by whole numbers (e.g. $1 / 3 \div 2=1 / 6$) associate a fraction with division to		Dividing Fractions By Whole Numbers	What are the common factors of these pairs of numbers?

